Sunday, December 27, 2009

Cognitive mechanisms

Cognitive mechanisms; (Dec. 26, 2009)

Before venturing into this uncharted territory let me state that there is a “real universe” that each one perceives differently: if this real world didn’t exist then there would be nothing to perceive. The real world cares less about the notions of time and space. No matter how we rationalize about the real world our system of comprehension is strictly linked to our brain/senses systems of perceptions. The way animals perceive the universe is different than our perception.  All we can offer are bundles of hypotheses that can never be demonstrated or confirmed even empirically. The best we can do is to extend the hypothesis that our perceived universe correlates (qualitative coherent resemblance) with the real universe. The notions of time, space, and causality are within our perceived universe.  Each individual has his own “coherent universe” that is as valid as any other perception. What rational logic and empirical experiments have discovered in “laws of nature” apply only to our perceived universe; mainly to what is conveniently labeled the category of grown up “normal people” who do not suffer major brain disturbances or defects.

Man uses symbols such as language, alphabets, mathematical forms, and musical symbols to record their cognitive performances. Brain uses “binary code” of impressions and intervals of non impressions to register a codified impression.  Most probably, the brain creates all kinds of cells and chemicals to categorize, store, classify, and retrieve various impressions; the rational is that since no matter how fast an impression is it stands to reason that the trillions and trillions of impressions would saturate the intervals between sensations in no time.

We are born with 25% of the total number of synapses that grown up will form.  Neurons have mechanisms of transferring from one section of the brain to other parts when frequent focused cognitive processes are needed. A child can perceive one event following another one but it has no further meaning but simple observation.  A child is not surprised with magic outcomes; what is out of the normal for a grown up is as valid a phenomenon as another to him (elephant can fly). We know that vision and auditory sensations pass through several filters (processed data) before being perceived by the brain.  The senses of smell and taste circumvent filters and are sensed by the limbic (primeval brain) before passing this data to cognition.

The brain attaches markers or attributes to impressions that it receives.  Four markers that I call exogenous markers attach to impressions as they are “registered” or perceived in the brain coming from the outside world through our senses.  At least four other markers, I label “endogenous markers” are attached to internal cognitive processing and are attached to information when re-structuring or re-configurations are performed during the dream periods: massive computations are needed to stored data before they are transformed to other ready useful data before endogenous markers are attributed to them for registering in other memory banks. There are markers that I call “reverse-exogenous” and are attached to information meant to be exported from the brain to the outside world. They are mainly of two kinds: body language information (such as head, hand, shoulder, or eye movements) and the recorded types on external means such as writing, painting, sculpting, singing, playing instruments, or performing art work.

The first exogenous marker directs impressions from the senses in their order of successions. The child recognizes that this event followed the other one within a short period of occurrence. His brain can “implicitly” store the two events are following in succession in a qualitative order (for example the duration of the succession is shorter or longer than the other succession). I label this marker as “Time recognizer” in the qualitative meaning of sensations.

The second marker registers and then stores an impression as a spatial configuration. At this stage, the child is able to recognize the concept of space but in a qualitative order; for example, this object is closer or further from the other object. I call this marker “space recognizer”.

The third marker is the ability to delimit a space when focusing on a collection of objects. Without this ability to first limit the range of observation (or sensing in general) it would be hard to register parts and bits of impressions within a first cut of a “coherent universe”. I label this marker “spatial delimiter”

The fourth marker attaches “strength” or “weight” of occurrence as the impression is recognized in the database.  The child cannot count but the brain is already using this marker for incoming information. In a sense, the brain is assembling events and objects in special “frequency of occurrence” database during dream periods and the information are retrieved in qualitative order of strength of sensations in frequency.  I call this attribute “count marker”.

The fifth marker is an endogenous attributes: this marker is attached within the internal export/import of information in the brain. This attribute is a kind of “correlation” quantity that indicates same/different trends of behavior of events or objects.  In a sense, this marker will internally sort out data as “analogous” or contrary collections along a time scale. People have tendency to associate correlation with cause and effect relation but it is not. A correlation quantity can be positive (two variables have the same behavioral trend in a system) or negative quantity (diverging trends). With the emergence of the 5th marker the brain has grown a quantitative threshold in synapses and neurons to starting massive computations on impressions stored in the large original database or what is called “long-term memory”.

The sixth marker is kind of a “probability quantity” that permits the brain to order objects according to “plausible” invariant properties in space (for example objects or figures are similar according to a particular property, including symmetrical transformations). I label this the “invariant marker” and it re-structures collections of objects and shapes in structures such as hereditary, hierarchical, network, or circular.

The seventh marker I call the “association attribute”. Methods of deduction, inductions, and other logical manipulations are within these kinds of data types.  They are mostly generated from rhetorical associations such as analogies, metaphors, antonyms, and other categories of associations. No intuition or creative ideas are outside the boundary of prior recognition of the brain.  Constant focus and work on a concept generate complex processing during the dream stage. The conscious mind recaptures sequences from the dream state and most of the time unconsciously. What knowledge does is decoding in formal systems the basic processes of the brain and then re-ordering what seems as chaotic firing in brain cells.  Symbols were created to facilitate rules writing for precise rationalization.

The eighth marker I call the “design marker”; it recognizes interactions among variables and interacts with reverse exogenous markers since a flow with outside perceptions is required for comprehension. Simple perceived relationships between two events or variables are usually trivial and mostly wrong; for example thunder follows lightning and thus wrongly interpreted as lightning generates thunder.  Simple interactions are of the existential kind as in the Pavlov reactions where existential rewards, such as food, are involved in order to generate the desired reactions. The Pavlov reaction laws apply to man too. Interactions among more than two variables are complex for interpretations in the mind and require plenty of training and exercises.  Designing experiments is a very complex cognitive task and not amenable to intuition: it requires learning and training to appreciating the various cause and effects among the variables.

The first kinds of “reverse exogenous” markers can be readily witnessed in animals such as in body language of head, hand, shoulder, or eye movements; otherwise Pavlov experiments could not be conducted if animals didn’t react with any external signs. In general, rational thinking retrieves data from specialized databases “cognitive working memory” of already processed data and saved for pragmatic utility. Working memories are developed once data find outlets to the external world for recording; thus, pure thinking without attempting to record ideas degrades the cognitive processes with sterile internal transfer without new empirical information to compute in.

An important reverse-exogenous marker is sitting still, concentrating, emptying our mind of external sensations, and relaxing the mind of conscious efforts of perceiving the knowledge “matter” in order to experience the “cosmic universe”.

This article was not meant to analyze emotions or value moral systems.  It is very probable that the previously described markers are valid for the moral value systems with less computation applied to the data transferred to the “moral working memory”. I believe that more other sophisticated computations are performed than done to emotional data since a system is constructed for frequent “refreshing” with age and experiences.

I conjecture that emotions are generated from the vast original database and the endogenous correlation marker is the main computation method: the reason is that emotions are related to complex and almost infinite interactions with people and community; thus, the brain prefers not to consume time and resources on complex computations that involve many thousands of variables interacting simultaneously. Thus, an emotional reaction in the waking period is not necessarily “rational” but of the quick and dirty resolutions kinds. In the dream sessions, emotionally loaded impressions are barely processed because they are hidden deep in the vast original database structure and are not refreshed frequently to be exposed to the waking conscious cognitive processes; thus, they flare up within the emotional reaction packages.

Note: The brain is a flexible organic matter that can be trained and developed by frequent “refreshing” of interactions with the outside world of sensations. Maybe animals lack the reverse exogenous markers to record their cognitive capabilities; more likely, it is because their cognitive working memory is shriveled that animals didn’t grow the appropriate limbs for recording sensations: evolution didn’t endow them with external performing limbs for writing, sculpting, painting, or doing music. The fact that chimps were trained to externalize cognition as valid as 5 years old capabilities suggest that attaching artificial limbs to chimps, cats, or dogs that are compatible with human tools will demonstrate that chimps can give far better cognitive performance than expected.

This is a first draft to get the project going. I appreciate developed comments and references.

[Via http://adonis49.wordpress.com]

No comments:

Post a Comment